Benefits of Soybean

 

Health Tips

Credits : Google

 

Nutrient Facts of Soybean

Calories: 446 Kcal

Fat: 20 grams

Carbs: 30 grams

Proteins: 36 grams

Vitamin C : 10% of 100

Vitamin B-6 : 20% of 100

Iron : 87% of 100

 

Description:

Soybean is a wealth of health benefits. It is known as Soybean in North America.

It brings an enormous effect on a human body in a following ways:

  • Improving  metabolism
  • Increases weight in a healthy way
  • Reduces heart problems
  • Prevent birth defects
  • Reduces risk of  diabetes
  • Improves bone health
  • Reduces risk of cancer
  • Reduces effects of menopause
  • Improve digestive system

Soybean is one of most widely consumed crop in the world. It has loads of fiber and proteins, which helps in increasing the weight of an individual in a healthy way. Its scientific name is Gycine Max.


Health Benefits of Soybean

Given the fact that soybeans are a food that has been enjoyed by millions of people over thousands of year, it’s unexpected to find so much controversy surrounding this legume. And yet in the public press and in scientific research, soybeans have been a topic of ongoing controversy. For example, in 1999, the U.S. Food and Drug Administration (FDA) authorized a health claim for soy protein as a nutrient that could reduce risk of heart disease. And yet in 2007, numerous scientists in the U.S. officially asked the FDA to revoke its heart-related health claim for soy protein.

We suspect that one basic factor accounts for most of the controversy that has surrounded soy and its role in a healthy diet. This factor is what we would summarize as ‘east versus west’. Soybeans were adopted as important parts of the diet in China (and then later in Japan and Korea) long before they became part of European or North American diets. Culinary traditions involving soy have existed for dozens of generations across Asia, but remain almost non-existent even today in Western countries like the United States. When research is conducted on the health benefits of soybean in Asian diets, the findings seldom match up with research findings on U.S. and European populations.

What makes Eastern countries and Western countries so different with respect to soy? The answer to this question is complicated, but three issues seem especially important.

Soybeans are typically consumed as whole foods in the East:

First and perhaps foremost is the approach to soybeans as a dietary component in Eastern versus Western countries. In Eastern countries like China, Japan, and Korea, soybeans are typically consumed as whole foods. They may be cooked, roasted, fermented, or sprouted, but they are allowed to remain intact in the diet. Soybean consumption in Asia almost always involves a form of the legume that is whole food-related. In sharp contrast, consumption of soy in the United States seldom involves a whole food form. In the U.S., most of the soybean we consume has been highly processed, following cracking, dehulling, crushing, or being subjected to solvent extraction processes to separate the oils from the rest of the bean.

Total soy consumption is different when comparing East to West:

The amount of total soybean consumption in Eastern versus Western countries is also very different. In studies from China and Japan, it’s not surprising to see intake of soybeans occurring at the level of 100-200 grams per day. Yet in the U.S., we average less than one-tenth of that amount.


Metabolic differences of Soybean

Longstanding culinary traditions involving soy also seem to have contributed in various ways to important metabolic differences in Asian versus non-Asian populations. For example, about 50-60% of adults in Japan, China and Korea digest soybeans in such a way as to convert daidzein (one of soy’s key isoflavone phytonutrients) into equol (a closely-related phytonutrient called an isoflavan). By contrast, when U.S. adults eat soybeans, only 25-30% metabolize daidzein in this way. The role of bacteria in the digestive tract seems critical in the equol production process, and there may be other aspects of metabolism that also play pivotal roles.

When combined, these metabolic and whole-versus-processed food differences make research on soy difficult to interpret. A soy-related dietary practice that works for adults in China may not work for adults in the U.S., or vice-versa. In addition, until soybeans are enjoyed on a more regular basis in their whole food form in the U.S., research studies on U.S. adults may continue to show mixed results in terms of health benefits.

Even with all of the “east versus west” circumstances that complicate research on soybeans and health, we believe several areas of health benefit still shine through in studies of this much-loved legume. In the paragraphs below, you will learn more about these specific health areas.

According to a recent research analysis, U.S. adults would increase their intake of folate, vitamin K, calcium, magnesium, iron and fiber if they replaced their meat and dairy intake with soy. Since legumes like soybeans are often overshadowed by vegetables and fruits in terms of nutrient richness, we sometimes forget just how beneficial legumes like soybeans can be.

Along with the nutrients listed above, soybeans are also an important source of the minerals copper, manganese, molybdenum, phosphorus, and potassium; the B vitamin, riboflavin; and omega-3 fatty acids (in the form of alpha-linolenic acid). Replacing meat and dairy with soy would also lower total cholesterol intake by about 125 milligrams per day and saturated fat by about 2.4 grams per day. These nutritional changes, in turn, would lower risk of several chronic diseases, including cardiovascular diseases. The idea of getting 10 grams of fiber and 25-30 grams of high-quality protein for 300 calories (1 cup of soybeans) is somewhat amazing. On a diet of 1,800 calories, 300 calories would only represent 16-17% of the total calories for one day. Yet, while only taking up one-sixth of the day’s calories, a cup of soybeans provides us with 40% of the Daily Value for fiber and 50-60% of the Daily Value for protein!

In addition to all of their nutrient richness described above, soybeans also offer many unique nutrients less familiar to most people. In some cases, the health benefits of these nutrients are only beginning to be understood by researchers.

As discussed earlier, research on soybeans has provided mixed results in the area of cardiovascular benefits, with some studies showing no benefits and other studies showing significant ones. We believe that two aspects of the “east versus west” phenomenon described earlier may have contributed to these mixed findings. First is the difference between studies involving whole soybeans versus studies involving processed soybean components (like soy protein isolates). In repeated research findings, whole food soybeans have been shown to provide us with better cardiovascular support than dietary supplements containing soy components. “Better” in this case means not only more consistent but also more in-depth cardiovascular support.

However, even in the case of whole food soybeans, we would not describe this cardiovascular support as being “strong.” A better word would be “moderate.” The most consistent effect of soybean intake on blood fats has been a moderate lowering of LDL cholesterol. Some studies show other positive impacts on blood fats, such as the lowering of triglycerides and total cholesterol or the raising of HDL cholesterol (the “good” cholesterol). However, these additional blood fat results have not been confirmed in all studies.

Soyasaponins are soy phytonutrients that have been especially interesting to researchers with respect to their cardiovascular benefits. There is some evidence, mostly in animal studies, that soyasaponins can lessen the rate of lipid peroxidation in blood vessels, lessen absorption of cholesterol from the GI tract, and increase excretion of fecal bile acids. All of these events would be expected to contribute to a decreased risk of cardiovascular disease. We look forward to further studies involving humans who take in soyasaponins through a normal diet that includes whole food soybeans.

The area of cancer prevention is perhaps the most controversial area of health research on soybeans. Many studies provide us with evidence that supports the role of whole soy foods in a cancer-preventing diet. Genistein (an isoflavone phytonutrient in soy) is often a key focus in these cancer-prevention studies. This soy isoflavone can increase activity of a tumor suppressor protein called p53. When p53 becomes more active, it can help trigger programmed cell death (apoptosis) in cancer cells, and it also help trigger cell cycle arrest (helping stop ongoing cancer cell activity). Genistein has also been shown to block the activity of protein kinases in a way that can help slow tumor formation, especially in the case of breast and prostate cancer. It’s also worth noting here that genistein becomes more concentrated in soy foods when those foods are fermented.

All of the above cancer-preventing possibilities of genistein and soy are complicated by other real-life factors, however. In some studies, the amount of genistein required to trigger cancer-preventive effects has been relatively high, and far higher than the amount provided by average intake among U.S. adults. The lifecycle and metabolic status of individuals also seems to make a potentially important difference in the anticancer benefits of soy. For example, in studies on soy intake and breast cancer, women who are pre-menopausal and develop tumors that are neither estrogen receptor nor progesterone receptor positive, soy and genistein intake do not appear to offer risk reduction. Overall dietary intake may also make an important difference in the anticancer benefits of soy. For example, without strong dietary intake of fresh fruits and vegetables, soy foods many not provide a reliable level of anticancer benefits.

In addition to the precautions about anticancer benefits of soy described above, there is also some evidence that large amounts of processed soy components (like might be obtained from large doses of purified soy isoflavones through dietary supplements) may actually increase risk of certain cancers, including breast cancer. This evidence should not be surprising. Under certain metabolic circumstances, most antioxidant, anti-inflammatory, and anti-tumor compounds can also act in a way that is pro-oxidant, pro-inflammatory, and pro-tumor (often called a “proliferative” affect that is promoting of tumor growth). It’s certainly easy to see why soy has remained so controversial in the minds of some researchers!

Our recommendations to you based on all of this information are as follows: first, if you have a family history of hormone-related cancers like breast cancer or prostate cancer, we recommend that you consult with your healthcare provider before consuming very large amounts of soy in your diet (for example, 3 or more servings per day). This recommendation is a conservative one on our part, but we believe that it’s justified based on the current level of controversy in the health research. Second, we recommend that you choose whole food soybeans whenever possible, rather than highly processed versions like soy protein isolates and soy protein concentrates. Finally, we recommend that you consider fermented versions of soy (including tempeh, fermented tofu, and miso) which have a better research track record in the cancer prevention area than non-fermented soy products.

In the overall picture, we continue to believe that soy foods can provide you with important health benefits, including anti-cancer benefits. But we also believe that persons wanting to include soy in an anti-cancer diet need to pay attention to the form of the soy, the amount consumed, their personal health history, and in some cases, the advice of their healthcare provider.

Hot flashes are very common symptoms of menopause and peri-menopause in U.S. women (often called “night sweats” when they occur at night) can cause great suffering and can easily affect mood throughout the day and impair concentration. Approximately 70-80% of U.S. women of menopausal and peri-menopausal age experience hot flashes, in comparison with approximately 10-20% of Asian women. By comparison, the average level of the soy isoflavone genistein in the bloodstream of Asian women is approximately 25 nanograms per milliliter, but in U.S. women, only 2 nanograms. This sharp contrast between frequency of hot flash symptoms and soy genistein levels has led many researchers to wonder about the hot flash-preventing potential of soybeans. Unfortunately, most studies to date fail to establish a reliable connection between dietary soy intake and occurrence of hot flashes. It’s possible that future research studies will tell a different story, but at present, we aren’t aware of any findings that show clear benefits for hot flash relief from increased intake of soy.

The area of bone health benefits from soy has remained nearly as controversial as the anti-cancer area due to the large amount of mixed evidence found in human studies on soy and bone health. In support of bone benefits has been the finding in many studies of improved markers of bone health following consumption of soy. (Improved bone health markers have included a decrease in the number of cross-linked telopeptides and a decrease in blood levels of bone specific alkaline phosphatase.) In addition, a lower rate of osteoporosis in some countries has been associated with increased intake of whole soy foods, especially fermented whole soybean foods. At the same time, however, soy intake (especially processed soy intake, including soy protein concentrates, isolated soy protein, and supplements containing purified soy isoflavones) has often failed to show any improvement in bone mineral density or bone metabolism.

Some of the mixed findings appear to be related to conversion of the soy isoflavone, daidzein, by intestinal bacteria into a metabolite called equol. In some Asian countries, the rate of equol formation in adults is approximately double the rate of U.S. adults. (Interestingly, among U.S. adults, the rate of equol formation from daidzein is almost double in vegetarians versus non-vegetarians.) Soy foods appear to be more helpful in supporting bone (for example, in lessening loss of minerals from bone) when individual metabolism and gut micro-organisms support the conversion of daidzein into equol. There is also some evidence that this entire process may be under some level of genetic regulation.

In the overall picture, we continue to believe that soy foods can provide you with important health benefits, including bone-related benefits. It’s important to remember that soybeans provide a good amount of vitamin K—a much-needed nutrient with respect to bone health. (Soy foods fermented with Bacillus bacteria may be able to provide additional vitamin K benefits, as described later on in this Health Benefits section.) Equally important, soy protein is a plant protein. In broad studies of diet and bone health, plant proteins have a better track record in support of bone than animal proteins. Even though many controversies remain in the area of soybeans and bone health, we believe that your 4-8 cups of legumes each week (our World’s Healthiest Foods recommended intake level for legumes) should contain some whole food form of soybeans—and especially versions that have also been fermented.

Increased protein intake has always been associated with suppression of appetite, and plant foods like soy that provide concentrated amounts of protein have a research-based ability to help suppress appetite. (Of course, our experience of appetite is very complicated, and there is no simple way to change our appetite exclusively through diet.) Some studies on unique peptides (protein-like components) in soy have shown the ability of this peptides to decrease synthesis of SREBPs (sterol regulatory element binding proteins), thereby helping decrease synthesis of certain fatty acids as well as depositing of these fatty acids in fat cells. This fascinating research on soyfoods and obesity is still in the early stages, however.

A second area of potential health benefit is prevention of type 2 diabetes. In multiple animal studies, soy foods have been shown to lessen insulin resistance by increasing the synthesis of insulin receptors. However, this increased formation of insulin receptors only appears to occur in the presence of other dietary circumstances, like a moderate amount of polyunsaturated fat intake. High levels of total soy intake (approximately 200 grams per day) have also been associated with decreased risk of type 2 diabetes, but only in Asian populations thus far. We look forward to more research on human consumption of soy and prevention of chronic health problems related to insulin metabolism and blood sugar levels.

Soybeans of all kinds qualify as a good source of vitamin K based on our food-nutrient ranking system. However, your vitamin K benefits from soybeans may be increased in the case of certain fermented soy foods. By far the most famous micro-organism used in fermentation of soybeans is the koji mold, Aspergillus oryzae. (Aspergillus oryzae can also be called a fungus, since molds are simply a special type of fungus called filamentous fungus.) Koji mold is a key to many of the unique qualities of many soy pastes, as well as soy miso and soy sauce. However, other micro-organisms may also be used to help ferment soybeans, and one is the bacterium Bacillus subtilis. The use of Bacillus subtilisin soybean fermentation is especially important in production of the fermented soy food, natto and (Bacillus subtilis varnatto is one special variant (strain) of Bacillus used in natto production.) Natto is a sticky and stringy form of soybeans in which you can still see the individual beans. It has a distinctly pungent aroma, and it has been widely enjoyed in Asia cuisines for several thousand years, and especially in Japanese cuisine. However, Bacillus bacteria are also sometimes used in the production of other fermented soy foods, including soy pastes (especially Chinese soy pastes) and soy miso. Korean-style soy sauce may also be fermented with the help of Bacillus bacteria.

From a health standpoint, one of the reasons that Bacillus bacteria are so interesting is their ability to create a form of vitamin K called menaquinone-7 (MK-7). Vitamin K (in all forms) is an important nutrient for bone health. Sufficient intake of vitamin K is associated with decreased risk of osteoporosis, since this vitamin is involved with maintenance of bone mineral density and also with shaping of bone structure (through gamma-carboxylation). In the case of MK-7 (the form of vitamin K produced by Bacillus bacteria, and a member of the vitamin K2 menaquinone family), we know that higher levels of MK-7 in the blood correspond to lower risk of hip fracture in older Japanese women, and that higher MK-7 levels correspond to increased intake of soy foods that have been fermented with Bacillus bacteria. One fascinating aspect of Bacillus-fermented soy foods is the potential ability of these bacteria to stay alive in our lower intestine after these foods are consumed. We’ve seen one study in which 1.6-20 million Bacillus bacteria (per gram of feces) were found to remain alive up to 6 days following consumption of natto. If Bacillus bacteria from fermented soy foods can remain alive in our digestive tract, they may keep providing us with vitamin K benefits many days after their consumption.

Another interesting piece of information about vitamin K and fermented soy foods involves regulation of health claims on food products in Japan. The Foods for Specified Health Uses, or FOSHU system does not currently allow for bone-related health claims for natto in the Japanese marketplace, even though this food is an approved FOSHU product recognized as containing MK-7. The reason for disallowed health claims is the lack of vitamin K deficiency in Japan, not lack of data to support a possible MK-7 benefit. (In other words, the Japanese population may already be taking good advantage of fermented soy foods and their potential vitamin K benefits!).

Other areas of active research on soy and health include chronic obstructive pulmonary disease (COPD), periodontal disease, and neurodegenerative disease.